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1 Information and Knowledge

This section is based upon reading of Levin, 2006.

1.1 A Model of Knowledge

Definition 1.1 (Model of Knowledge)
1. A set of states Ω, one of which is true.

2. For each state ω ∈ Ω, and a given agent i, there is a set of information function

hi(ω).

3. An event is a set of states E ⊆ Ω.

4. An agent knows E if E obtains at all the states that the agent believes are possible.

Definition 1.2 (Information function)
Given a set of states Ω, an information function associates every state ω ∈ Ω with a

nonempty subset h(ω) of Ω.

Note on h(ω) h(ω) is the set of states the agent believes to be possible at ω.

Definition 1.3 (Partitional information function 1)
An information function is partitional if there is some partition of Ω such that for any

ω ∈ Ω, h(ω) is the lement of the partition that contians ω.

Definition 1.4 (Partitional information function 2)
An information function is partitional iff it satisfies P1 and P2.

P1 ω ∈ P (ω) for every ω ∈ Ω.

P2 If ω′ ∈ P (ω) then P (ω′) = P (ω).

Note on Interpretation
1. Property P1 says that, given state ω, the agent is not convinced that the state is not ω.

2. Property P2 says that if ω′ is also deemed possible, then the set of states that would be

deemed possible were the state actually ω′ must be the same as those currently deemed

possible at ω.
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Example 0.1 Given state Ω = {a, b}, the information funciton P (a) = {a}, P (b) = {a, b}
satisfies P1 but not P2.

Definition 1.5 (Knowledge function 1)
The agent’s knowledge function of event E is the set of states at which the agent knows E:

K(E) = {ω ∈ Ω : h(ω) ⊆ E}.

Note on Interpretation If h(ω) ⊂ E, then in state ω, the agent views ¬E as impossible. Hence

we say that the agent knows E.

Example 0.2 SupposeΩ = {ω1, ω2, ω3, ω4},H = {{ω1, ω2} , {ω3} {ω4}}, thenK ({ω3, ω4}) =
{ω3, ω4} and K ({ω1, ω3}) = {ω3}.

Lemma 1.1 (Knowledge function’s property)
The knowledge function derived from any information function satisfies:

K1 (Axiom of Awareness) K(Ω) = Ω.

K2 K(E) ∩K(F ) = K(E ∩ F ).

K3 If E ⊆ F , then K(E) ⊆ K(F ).

If P1 is satisfied, then

K4 (Axiom of knowledge) K(E) ⊆ E.

If P (.) is partitional, then

K5 (Axiom of transparency) K(E) ⊆ K(K(E)).

K6 (Axiom of wisdom) ¬K(E) ⊆ K(¬K(E)), where ¬K(E) = Ω\K(E).

Note on Interpretation
1. K1: Regardless of the actual state, the agent knows that he is in some state.

2. K2: If the agent knows E and knows F , then he knows E ∩ F .

3. K3: If F occurs whenever E occurs, then knowing F means knowing E as well. This

property can be derived directly from K2.

4. K4: If the agent knows E, then E must have occurred.

5. K5: If the agent knows E, then he knows that he knows E. Moreover, if P (.) is partitional,

then we can say K(E) = E (and also K(E) = K(K(E))).

6. K6: If the agent doesn’t know E, then he knows that he doesn’t know E.

Example 0.3 Puzzle of hats Each of three individuals is wearing a hat that is either black or

white. Each can see others’ hats, but not his own. The states of the world are

a b c d e f g h

1 B B B B W W W W

2 B B W W B B W W

3 B W B W B W B W

.
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And the information partitions are

P1 = {{a, e}, {b, f}, {c, g}, {d, h}}

P2 = {{a, c}, {b, d}, {e, g}, {f, h}}

P3 = {{a, b}, {c, d}, {e, f}, {g, h}}

.

Suppose that all the hats are black. If you ask any one whether he can identify the color

of his own hat, the answer is always negative. Now, if you tell them that there is at least

one black hat, the answer may change. The event that i knows the color of his own hat is

Ki
c := {w : Pi(w) ∈ Ei

W or Pi(W ) ∈ Ei
B}, and at the begining, Ki

C = ∅. Firstly, we can

exclude h.
P1 = {{a, e}, {b, f}, {c, g}, {d,�h}}

P2 = {{a, c}, {b, d}, {e, g}, {f,�h}}

P3 = {{a, b}, {c, d}, {e, f}, {g,�h}}

Then for player 1, we have K1
c = {d} and 1 knows the answer if state is d, if 1 say no, it means

the case cannot be d.
P1 = {{a, e}, {b, f}, {c, g}, {d,�h}}

P2 = {{a, c}, {b, �d}, {e, g}, {f,�h}}

P3 = {{a, b}, {c, �d}, {e, f}, {g,�h}}

Then for player 2, 2 knows the answer if state is b or f, if player 2 say no, it cannot be b or f.

P1 = {{a, e}, {b, f}, {c, g}, {d,�h}}

P2 = {{a, c}, {b, �d}, {e, g}, {f,�h}}

P3 = {{a, �b}, {c, �d}, {e, ��f}, {g,�h}}

1.2 Common Knowledge

Definition 1.6 (Common knowledge 1)
Let K1 and K2 be the knowledge functions of individuals 1 and 2 for the set Ω of states. An

event E ⊆ Ω is common knowledge between 1 and 2 in the state ω ∈ Ω if ω is a member

of every set in the infinite sequence K1(E),K2(E),K1(K2(E)), ...

Note on Interpretation That is, at the state ω, 1 knows E, 2 knows E, 1 knows that 2 knows E,

...

Definition 1.7 (Self-evident event)
Let P1 and P2 be the information functions of individuals 1 and 2 for the set Ω of states.

An event F ⊆ Ω is self-evident between 1 and 2 if for all ω ∈ F we have Pi(ω) ⊆ F for

i = 1, 2.

Note on ¬F If F is self-evident, then ¬F is also self-evident.

Note on Ω The entire space is always self-evident and common knowledge.
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Definition 1.8 (Common knowledge 2)
An event E ⊆ Ω is common knowledge between 1 and 2 in the state ω ∈ Ω if there is a

self-evident event F for which ω ∈ F ⊆ E.

Lemma 1.2 (Equivalence of Self-evident)
The following are equivalent:

1. Ki(E) = E for all i,

2. E is self-evident,

3. For all i, E is a union of members of the partition induced by hi.

Lemma 1.3
Definition 1.2 and Definition 1.2 are equivalent.

Note on Example Let Ω = {a, b, c, d, e, f} and E = {a, b, c, d}, and

P1 = {{a, b}, {c, d, e}, {f}}

P2 = {{a}, {b, c, d}, {e}, {f}}
.

Then we have

K1(E) = {a, b}

K2(E) = E

K1 (K2(E)) = {a, b}

K2 (K1(E)) = {a}

K1 (K2 (K1(E))) = ϕ

Thus E cannot be common knowledge between 1 and 2.

Definition 1.9 (Posterior belief)
Suppose that individuals 1 and 2 have the same prior belief ρ(.) on Ω and partitional

information functions Pi(.). Then in some states ω∗ ∈ Ω, individual i’s posterior belief

that some state in the event E has occurred is

ρ (E | Pi (ω
∗)) =

ρ (E ∩ Pi (ω
∗))

ρ (Pi (ω∗))

Definition 1.10 (Knowledge function 2)
Individual i knows event E in state ω (Pi(ω) ⊆ E) is equivalent to

ρ (E | Pi(ω)) = 1

and then the knowledge function can be defined as

Ki(E) = {ω ∈ Ω : ρ (E | Pi(ω)) = 1} .

Note on More generally, we can define the event that individual i assigns probability qi to event
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E as

{ω ∈ Ω : ρ (E | Pi(ω)) = qi} .

Note on Example Let Ω = {ω1, ω2, ω3, ω4}, ρ (ω1) = ρ (ω4) = 1/6 and ρ (ω2) = ρ (ω3) =

1/3.
P1 = {{ω1, ω2} , {ω3, ω4}}

P2 = {{ω1, ω3} , {ω2, ω4}}

Let E = {ω2, ω3}. It is easy to see that

ρ (E | Pi (ωs)) =
ρ(w2)

ρ(w1) + ρ(w2)
= 2/3

{ω ∈ Ω : ρ (E | Pi(ω)) = 2/3} = Ω.

1.3 The Agreement Theorem

Theorem 1.1 (Agreeing to Disagree 1 (Aumann, 1976))
If two people have the same priors, and their posteriors for an event A are common

knowledge, then these posteriors are equal.

Theorem 1.2 (Agreeing to Disagree 2 (Aumann, 1976))
Suppose two agents have the same prior belief over a finite set of states Ω. If each agent’s

information function is partitional and it is common knowledge in some state ω ∈ Ω that

agent 1 assigns probability η1 to some event E and agent 2 assigns probability η2 to E,

then η1 = η2.

Note on Interpretation Could two individuals who share the same prior over agree to disagree?

That is, if i and j share a common prior over states, could a state arise at which it was commonly

known that i assigned probability ηi to some event, j assigned probability ηj to that some event

and ηi ̸= ηj . This theorem concluded that this sort of disagreement is impossible.

Note on Agreement Theorem to No-trade Theorem Consider a trade where two agents bet on

a coin, and this trade holds only when agent believe that Pr( Heads ) > 1/2 and agent believe

that Pr( Heads ) < 1/2. However, Aumann’s theorem says the bet cannot happen since these

opposing beliefs would then be common knowledge!

Proof Let p be a probability measure on Ω – interpreted as the agent’s prior belief. For any

state ω and event E, let p (E | hi(ω)) denote i’s posterior belief, then the event that “i assigns

probability ηi to E” is {ω ∈ Ω : p (E | hi(ω) = ηi} . By the assumption of common knowledge,

there is some self-evident event F with ω ∈ F such that:

F ⊂
{
ω′ ∈ Ω : p

(
E | h1

(
ω′) = η1

}
∩
{
ω′ ∈ Ω : p

(
E | h2

(
ω′) = η2

}
By Lemma 1.2, F is a union of members of i’s information partition, i.e. F = ∪kAk = ∪kBk (Ω

is finite), where A and B are 1’s and 2’s information partition functions. Now, for any nonempty
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disjoint sets C,D with p(E | C) = ηi and p(E | D) = ηi, since

p(E | C) =
p(E ∩ C)

p(C)
= p(E | D) =

p(E ∩D)

p(D)
= ηi

p(E | C ∪D) =
p(E ∩ (C ∪D))

p(C ∪D)
=

p(E ∩ C) + p(E ∩D)

p(C) + p(D)
=

ηi(p(C) + p(D))

p(C) + p(D)
,

we have p(E | C ∪D) = ηi. Then for each k, we have p(E | F ) = p (E | Ak) = η1 = η1 and

p(E | F ) = p (E | Bk) = η2. ■

Note on Example Let Ω = {a, b, c, d} and each state occurs with prob 1/4, and

P1 = {{a, b}, {c, d}} and P2 = {{a, b, c}, {d}}.

Let E = {a, d}, since E is not common knowledge, at a we have

η1(E) = ρ(E | {a, b}) = 1/2

η2(E) = ρ(E | {a, b, c}) = 1/3
.

Player 1 knows η2(E), player 2 knows η1(E), but player 2 does not know what player 1 thinks

of η2(E).

1.4 The No-Trade Theorem

Let Ω be a set of states and X a set of consequences (trading outcomes). A contingent

contract is a function mapping Ω into X . Let A be the space of contracts. Each agent has a

utility function ui : X × Ω → R. Let Ui(a) = ui(a(ω), ω) denote i’s utility from contract a –

Ui(a) is a random variable that depends on the realization of ω. Let E [Ui(a) | Hi] denote i’s

expectation of Ui(a) conditional on his information H .

Theorem 1.3 (No-Trade Theorem 1 (Milgrom and Stokey (1982))
If a contingent contract b is ex ante efficient, then it cannot be common knowledge between

the agents that every agent prefers contract a to contract b.

Theorem 1.4 (No-Trade Theorem 2 (Milgrom and Stokey (1982))
If ex ante allocation is Pareto optimal, then even after the players receive their private

information, it cannot be common knowledge that they all expect to gain from trade.

1.5 E-mail Game (Rubinstein, 1989)

Even if each player is quite certain about the game being play, even small uncertainty about

other’s information can eliminate equilibria that exist when payoffs are common knowledge.

Formally, the fact that small perturbations of the information structure can eliminate Nash

equilibria occurs because the Nash equilibrium correspondence is not lower semi-continuous.

Consider the following Bayesian game, where L > M > 1. Player 1 is informed about the

true game, 2 is not. The unique bayesian nash equilibrium is ((A,A),A).

If player 1 can communicate with player 2 in such a way that the true game becomes common
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A B

A M,M 1,−L

B −L, 1 0, 0

Figure 1: G1 (1-p)

A B

A 0, 0 1,−L

B −L, 1 M,M

Figure 2: G2 (p<1/2)

knowledge, then there is a BNE in which both choose A in G1, and both choose B in G2. If

the communication is imperfect, e.g. in G2 player 1 sends a message to 2, and 2 sends back a

confirmation message. With probability ε > 0, a message is not received, and each player sees

the number of messages that he sent.

Formally, this bayesian game are

1. Ω = {(k1, k2) : k1 = k2 or k1 = k2 + 1};

2. Signal function τi : τi (k1, k2) = ki;

3. Common prior on Ω:
Pi(0, 0) =1− p

Pi(1, 0) =pε

Pi(1, 1) =pε(1− ε),

· · ·

Pi(k + 1, k) =pε(1− ε)2k

Pi(k + 1, k + 1) =pε(1− ε)2k+1

Lemma 1.4
The e-mail game has a unique BNE, in which both players always choose A.

Proof
■

2 Solution Concept 4: Bayesian Nash Equilibrium

Definition 2.1 (Complete vs. Incomplete Information)
A complete information game is one where all players’ payoff functions (and all other

aspects of the game) are common knowledge.

Definition 2.2 (Common Belief)
All players share the same belief: pi = p(t) = p (t1, t2, . . . , tn) for all i ∈ N .
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Definition 2.3 (Reduced form Bayesian Game (Li, 2022))

G = {Ai;Ti; pi;ui}ni=1

A reduced-form Bayesian game is a list as above, where

1. Ai is the action space of i,

2. Ti is the type space of player i, and a strategy of a player i is any function

si : Ti → Ai,

3. pi (t−i | ti) is i’s belief about the other players,

4. ui (a1, . . . , an; t1, . . . , tn) is i’s payoff function.

Definition 2.4 (Reduced form Bayesian Nash equilibrium (Li, 2022))
A strategy profile s∗ = (s∗1, . . . , s

∗
n) is a Bayesian Nash equilibrium (BNE) if for all ti,

s∗i (ti) is a best response to s∗−i, i.e., s∗i (ti) solves

max
ai∈Ai

∑
t−i∈T−i

pi (t−i | ti) · ui
(
ai, s

∗
−i (t−i) ; t

)
.

Theorem 2.1 (Purification Theorem (Harsanyi 1973))
The mixed-strategy NE of a strategic game can be viewed as the limit of pure-strategy

BNE in the slightly perturbed games.

Example 0.1 The stag hunt game has a mixed NE (p=q=1/2).

Hare Stag

Hare 1, 1 2, 0

Stag 0, 2 3, 3

Consider a perturbed game, where x and y are i.i.d. with uniform on [−ε, ε], x and y are privately

known by 1 and 2 respectively.

Hare Stag

Hare 1 + x, 1 + y 2 + x, 0

Stag 0, 2 + y 3, 3

Then there is a pure strategy BNE (s1(x), s2(y)) and beliefs:

s1(x) = H iff x > 0 and Pr (s2(y) = H|x) = Pr(y > 0) = 1/2

s2(y) = H iff y > 0 and Pr (s1(x) = H|y) = Pr(x > 0) = 1/2

And we can verify that the expected payoff of player 1 from choosing H is higher iff x > 0, so

as player 2.

u1(H|x) = 1

2
(1 + x) +

1

2
(2 + x) > u1(S|x) =

3

2
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Definition 2.5 (Bayesian Game (Li, 2022))
A bayesian game consists of

1. a finite set of players N , for each player i ∈ N ,

a set of actions Ai,

a finite set of signals Ti (type space) and a signal function τi : Σ → Ti,

a probability distribution (prior belief) pi on Σ, for which pi
(
τ−1
i (ti)

)
> 0

for all ti ∈ Ti,

a vNM preference ⪰i over the set of lotteries over A × Σ (or equivalently, a

Bernoulli payoff function ui(a;w));

2. a finite set of states Σ.

Note on Strategy In a Bayesian game, a strategy of a player i is any function si : Ti → Ai.

Definition 2.6 (Bayesian Nash equilibrium (Li, 2022))
A strategy profile s∗ = (s∗1, . . . , s

∗
n) is a Bayesian Nash equilibrium (BNE) if for all i and

ti, s∗i (ti) solves

max
ai∈Ai

∑
ω∈Ω

Pi (ω | ti) · ui
(
ai, s

∗
−i (τ−i(ω)) ;ω

)
,

where the posterior belief is given by Bayes’ law:

Pi (ω | ti) =
pi(ω)

p
(
τ−1
i (ti)

) if ω ∈ τ−1
i (ti)

Pi (ω | ti) = 0 if ω /∈ τ−1
i (ti)

Definition 2.7 (Separating, Pooling equilibrium)

3 Examples of finding BNE

3.1 Cournot Game with Incomplete information

3.2 Battle of the Sexes with Incomplete information

Suppose player 2 has two types and player 1 does not know player 2’s type, but holds a

belief about it. Then the expected payoffs are as follows, and the pure strategy NE is (F,(F,M)).

F M

F 2, 1 0, 0

M 0, 0 1, 2

Figure 3: Prob 1/2: 2 wishes to meet 1

F M

F 2, 0 0, 2

M 0, 1 1, 0

Figure 4: Prob 1/2: 2 wishes to avoid 1
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F, F F,M M,F M,M

F 2, 12 1, 32 1, 0 0, 1

M 0, 12 1/2, 0 1/2, 32 1, 1

Note that in this example (reduced form), we do not elaborate the signal function, that is, we

assume that player 2 also knows player 1 knows the state 1 with prob 1/2 and state 2 with prob

1/2. This assumption will be relaxed in the following sections.

3.3 Public good provision

Two players decide simultaneously whether or not to contribute to a public good. Each

player i derives a commonly known value v if at least one of them contributes and 0 if none of

them does. Player i’s cost of contribution is ci, only known to himself. It is common knowledge

that c1 and c2 are i.i.d. on [cL, cH ], and the continuous distribution function is F (.). The

reduced-form Bayesian game is:

1. Two players, i = 1, 2.

2. Player i’s action space: {0, 1}, where 1 stands for “contribute”, and 0 stands for “don’t”.

3. Player i’s type space: [cL, cH ].

4. Player i’s belief: Pr (cj ≤ c|ci) = F (c).

5. Player i’s payoff function:

ui (a1, a2; c1, c2) =


0 if a1 = a2 = 0

v − ci if ai = 1

v if ai = 0 and aj = 1

Symmetric BNE: Assume that v = 2, c1 and c2 are uniformly distributed on [1, 3]. There

is a symmetric BNE, in which s∗i (ci) = 1 iff ci ≤ c∗. To find c∗, note that BNE exhibits

a monotonicity property and player i of type c∗ must be indifferent between two actions. If

si(ci) = 1, his payoff is 2 − c∗; if si(ci) = 0, then his expected payoff is Pr (cj ≤ c∗) · v =

c∗−1
3−1 ·2 = c∗−1. Solve this equation, we obtain c∗ = 3/2. The insight here is the game becomes

inefficient if ci > 3/2, even if both players find it profitable, there is no public good. Because

both players have incentive to free ride.

2− c∗ = c∗ − 1

Two Asymmetric BNE: in which one player never contributes and the other player con-

tributes for all c ≤ v = 2. The existence of such asymmetric equilibria depends on the common

value v and the distribution of ci. More specifically, asymmetric equilibria exist when

vF (v) ≥ v − cL

that is, it is optimal for a player with the lowest cost not to contribute if he believes that the other

player contributes whenever that player’s cost does not exceed v. For example, if v = 1 and

c1, c2 ∼ U [0, 2], then there does not exist such asymmetric equilibria.
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3.4 BoS with incomplete information and uncommon belief

F M

F 2, 1 0, 0

M 0, 0 1, 2

Figure 5: Prob 1/2: 2 wishes to meet 1

F M

F 2, 0 0, 2

M 0, 1 1, 0

Figure 6: Prob 1/2: 2 wishes to avoid 1

When player 2 wishes to meet player 1, she believes that with probability 2/3 player 1

knows it and with probability 1/3 he does not know; when player 2 wishes to avoid player 1,

she believes that with probability 1/3 player 1 knows it and with probability 2/3 he does not

know. Everything above is common knowledge between 1 and 2. The bayesian game thus can

be formally formulated as below:

1. The set of players: {1, 2};

2. The set of actions for each player i: {F,M};

3. The set of states Ω = {ω1, ω2, ω3, ω4}, where

in ω1, player 2 wishes to meet player 1 and player 1 knows it,

in ω2, player 2 wishes to meet player 1 and player 1 does not know it,

in ω3, player 2 wishes to avoid player 1 and player 1 knows it,

in ω4, player 2 wishes to avoid player 1 and player 1 does not know it.

4. For each player i, a set of signals Ti and a signal function τi : Ω → Ti,

T1 = {t11, t12, t13} : τ1 (ω1) = t11, τ1 (ω3) = t12, and τ1 (ω2) = τ1 (ω4) = t13.

T2 = {t21, t22} : τ2 (ω1) = τ2 (ω2) = t21, and τ2 (ω3) = τ2 (ω4) = t22.

5. The common prior belief p on Ω: p (ω1) = 1/3, p (ω2) = 1/6, p (ω3) = 1/6, p (ω4) =

1/3.

6. Updated beliefs after receiving signals:

Player 1: since only when the state is ω1, player 1 can receive signal t11, player 1’s

updated belief after receiving t11 is:

P1 (ω1 | t11) =
p (ω1)

p
(
τ−1
1 (t11)

) =
p (ω1)

p (ω1)
= 1 and P1 (ωs | t11) = 0 for ωs ̸= ω1

similarly, player 1’s updated belief after receiving t12 is

P1 (ω3 | t12) = 1 and P1 (ωs | t12) = 0 for ωs ̸= ω3

and after receiving t13, player 1 knows that the state is either ω2 or ω4, and using the

Bayes rule, his updated belief is: P1 (ω1 | t13) = P1 (ω3 | t13) = 0, and

P1 (ω2 | t13) =
p (ω2)

p
(
τ−1
1 (t13)

) =
p (ω2)

p (ω2) + p (ω4)
=

1

3
, P1 (ω4 | t13) =

2

3
.

Player 2: after receiving t21, player 2 knows that the state is either ω1 or ω2, and

using the Bayes rule, her updated belief is: P2 (ω3 | t21) = P2 (ω4 | t21) = 0, and

P2 (ω1 | t21) =
p (ω1)

p
(
τ−1
2 (t21)

) =
p (ω1)

p (ω1) + p (ω2)
=

2

3
, P2 (ω2 | t21) =

1

3
;
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similarly, after receiving t22, her updated belief is: P2 (ω1 | t22) = P2 (ω2 | t22) = 0,

P2 (ω3 | t22) =
p (ω3)

p
(
τ−1
2 (t22)

) =
p (ω3)

p (ω3) + p (ω4)
=

1

3
, P2 (ω4 | t22) =

2

3
.

7. The vNM payoff functions:

Player 1: for all ωs ∈ Ω,

u1 ((F, F );ωs) = 2, u1 ((M,M);ωs) = 1, u1 ((F,M);ωs) = u1 ((M,F );ωs) = 0

Player 2:

u2 ((M,M);ω1) = u2 ((M,M);ω2) = 2, u2 ((F, F );ω1) = u2 ((F, F );ω2) = 1

u2 ((F,M);ω1) = u2 ((F,M);ω2) = u2 ((M,F );ω1) = u2 ((M,F );ω2) = 0

and

u2 ((F,M);ω3) = u2 ((F,M);ω4) = 2, u2 ((M,F );ω3) = u2 ((M,F );ω4) = 1

u2 ((F, F );ω3) = u2 ((F, F );ω4) = u2 ((M,M);ω3) = u2 ((M,M);ω4) = 0

8. A strategy for player i is a function si : Ti → {F,M}. That is, the strategy specifies the

actions that player i chooses after receiving each possible signal.

9. Bayesian Nash equilibrium: a strategy profile s∗ is a BNE if for each player i and each

ti ∈ Ti, s∗i (ti) solves

max
ai∈{F,M}

∑
ωs∈Ω

Pi (ωs | ti) · ui
(
ai, s

∗
j (τ2 (ωs)) ;ωs

)
That is, after receiving a signal ti ∈ Ti, the action s∗i (ti) ∈ {F,M} gives player i the

highest expected payoff calculated using his updated beliefs.

Note that player 1’s strategy consists of three actions and player 2’s strategy consists of two

actions, one action for each signal that the player may receive. Thus, player 1 has eight pure

strategies and player 2 has four pure strategies. In our analysis below, we consider the possibility

that each of player 2’s pure strategies is used in a BNE.

1. FF: If player 2 always chooses F in a BNE, then player 1’s strategy in such a BNE must be

choosing F regardless of the signal he receives. However, if player 1 always chooses F, it

is not optimal for player 2 to choose F after receiving signal t22, i.e. player 2 knows that

the state is either ω3 or ω4, in which she receives a higher payoff from action profile (F,M)

than from (F,F). Thus FF can not be player 2’s strategy in a BNE.

2. MM: Similarly, MM cannot be player 2’s strategy in a BNE.

3. MF, i.e. choosing M (F resp.) after receiving t21 (t22 resp.). It is easy to see that player 1’s

best response to this strategy is to choose M after receiving t11, choose F after receiving

t12, and choose F after receiving t13. Then we need to check whether MF is player 2’s best

response to player 1’s strategy MFF. When player 2 receives t22, her updated belief is that

with probability 1/3, the state is ω3, in which player 1 would receive signal t12 and choose

F; with probability 2/3, the state is ω4, in which player 1 would receive signal t13 and also

choose F. Clearly, it cannot be optimal for player to choose F. Thus, MF cannot be player

2’s strategy in a BNE.

12



3 Examples of finding BNE

To identify player 1’s optimal action after receiving t13, we need to calculate player

1’s expected payoff from using either action. Note that after receiving t13, player 1’s

update belief is that with probability 1/3, the state is ω2, in which player 2 would

receive signal t21 and choose M; with probability 2/3, the state is ω4, in which

player 2 would receive signal t22 and choose F. Thus, player 1’s expected payoff from

choosing F is 2×2/3 = 4/3, his expected payoff from choosing M is 1×1/3 = 1/3,

and it is optimal to choose F.

4. FM, i.e., choosing F (M resp.) after receiving t21 (t22 resp.) : It is easy to see that player

1’s best response to this strategy is to choose F after receiving t11, choose M after receiving

t12, and player 1 is indifferent between F and M after receiving t13, both FMM and FMF

are player 1’s best responses to player 2’s strategy FM. Next we want to check whether MF

is player 2’s best response to FMM or FMF, and only (FMF, FM) is a BNE.

Note that after receiving t13, player 1’s update belief is that with probability 1/3, the

state is ω2, in which player 2 would receive signal t21 and choose F; with probability

2/3, the state is ω4, in which player 2 would receive signal t22 and choose M. Thus,

player 1’s expected payoff from choosing F is 2 × 1/3 = 2/3, his expected payoff

from choosing M is 1× 2/3 = 2/3, and it is optimal to choose F.

FMM: After receiving t22, player 2’s updated belief is that the state is either ω(1/3)

or ω4(2/3), in which player 1 receives either t12 or t13. Since player 1 will choose

M after receiving t12 or t13, it is not optimal for player 2 to choose M after receiving

t22. Thus, (FMM, FM) is not a BNE.

5. FMF: After receiving t21, player 2’s updated belief is that the state is either ω1(2/3) or

ω2(1/3), player receives either t11 or t13. Since player 1 would choose F after receiving

t11 or t13, it is optimal for player 2 to choose F after receiving t21. After receiving t22,

player 2’s updated belief is that the state is either ω3(1/3) or ω4(2/3), player 1 receives

either t12 or t13, and choose F (M resp.) with probability 2/3 (1/3 resp.), it can be verified

that M is indeed the optimal action for player 2 after receiving t22. Thus, (FMF, FM) is a

BNE.

To sum up, there is a unique pure-strategy BNE:

s∗1 (t11) = F, s∗1 (t12) = M, s∗1 (t13) = F ; s∗2 (t21) = F, s∗2 (t22) = M.

Note on Existence In general, a pure-strategy BNE may not exist, but Nash existence theorem

still applies, that is, a finite Bayesian game always has a BNE in pure or mixed strategies.

Note on Reduced form This game can also be analyzed in its reduced form the same as we do

under the state-space formulation. While the later gives us a better understanding of the concept

of “type”.

1. The set of players: {1, 2};

2. The set of actions for each player i: {F,M};

3. For each player i, a set of signals Ti and a signal function τi : Ω → Ti,

13



4 Auction Theory

T1 = {t11, t12, t13} : τ1 (ω1) = t11, τ1 (ω3) = t12, and τ1 (ω2) = τ1 (ω4) = t13.

T2 = {t21, t22} : τ2 (ω1) = τ2 (ω2) = t21, and τ2 (ω3) = τ2 (ω4) = t22.

4. Beliefs

Player 1
P1 (t21 | t11) = 1, P1 (t22 | t11) = 0

P1 (t21 | t12) = 0, P1 (t22 | t12) = 1

P1 (t21 | t13) =
1

3
, P1 (t22 | t13) =

2

3

Player 2
P2 (t11 | t21) =

2

3
, P2 (t12 | t21) = 0, P2 (t13 | t21) =

1

3

P2 (t11 | t21) = 0, P2 (t12 | t21) =
1

3
, P2 (t13 | t21) =

2

3

5. The vNM payoff functions:

Player 1: for all type profile t ∈ T1 × T2, i.e., player 1’s payoff depends only on the

action profile, not on the types.

u1((F, F ); t) = 2, u1((M,M); t) = 1, u1((F,M); t) = u1((M,F ); t) = 0

Player 2: for all type profile t21 ∈ T1 × {t21}

u2 ((M,M); t21) = 2, u2 ((F, F ); t21) = 1, u2 ((F,M); t21) = u2 ((M,F ); t21) = 0

and for all type profile t22 = T1 × {t22}

u2 ((F,M); t22) = 2, u2 ((M,F ); t22) = 1, u2 ((F, F ); t22) = u2 ((M,M); t22) = 0

4 Auction Theory

4.1 Auction Mechanism

Definition 4.1 (Open ascending auction (English auction))

Definition 4.2 (Open descending auction (Dutch auction))

Definition 4.3 (First-Price (Sealed Bid) Auction)

Definition 4.4 (Second-Price (Sealed Bid) Auction)

Lemma 4.1 (Strategic equivalence of different auctions)

14



4 Auction Theory

Definition 4.5 (Auction Mechanism)
An auction is a mechanism with well-defined allocation rule and payment rule.

1. Allocation rule:

2. Payment rule:

Definition 4.6 (Assumptions for Auction)
1. Independent Private Value: vi are independent and private.

2. Symmetry: same distribution F for vi
3. Zero-one support: F has a support of [0, 1]

4. Linear payoff: u(win)=vi − pi

5. Risk Neutrality:

Definition 4.7 (Bidding function)
Bidder i’s bid is a function from [0, 1] to non-negative number: βi : [0, 1] → R+.

Definition 4.8 (Bidding Strategy)
Bidding strategy βi can be represented by a graph.

1. Truthful bidding:

2. Overbidding:

3. Underbidding (Bid-shading):

Figure

4.2 Second-price auction (Kartik, 2009)

There are I bidders, with value 0 ≤ v1 ≤ ... ≤ vI , and their values are common knowledge.

All bidders simultaneously bid si ∈ [0,∞], the highest one wins the auction and pays the second-

high price. Define W (s) = k : ∀j, sk ≥ sj as the set of highest bidders, then bidder i’s utility

is

ui(si, s−i) =


vi −maxj ̸=isj if si > maxj ̸=isj

1
|W (s)|(vi − si) if si = maxj ̸=isj

0 if si < maxj ̸=isj

Note on Another mechanism under equality When more than one bidder submits the highest

bid, each gets the object with equal probability by a lottery, and the payment is equal to the

highest bid in this case. Note that this does not change our results.

Lemma 4.2 (BNE for Second-price Auction)
Everyone chooses to bid their real valuation si = vi, and this strategy is weakly dominant.

Proof Let m(s−i) = maxj ̸=isj . Supposes si > vi, then for any strategy profile s−i, if

m(s−i) > si, then ui(si, s−i) = 0; if m(s−i) ≤ vi, then ui(si, s−i) = ui(vi, s−i) ≥ 0;
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4 Auction Theory

otherwise if m(s−i) ∈ (vi, si], then ui(si, s−i) < 0. Thus when si > vi, si = vi is weakly

dominant. The case of si < vi can be proved similarly. ■

4.3 First-price Auction

Lemma 4.3 (BNE for Uniform First-price Auction)
In a first-price auction, assuming values are i.i.d. uniformly distributed on [0, v̄], the

bidding strategy bi =
(
n−1
n

)
vi comprises a symmetric Bayesian Nash equilibrium.

Proof Fix a bidder i. We assume that all bidders chooses bi according to linear strategy

si = αvi + β, and argue that bidder i should do the same to find the value of α and β. Note that

the probability of bidder i winning the auction is Pr(si > sj , j ̸= i), and the expected utility is

E[si] = (
si − β

αv̄
)N−1(vi − si)

By the FOC, we have si = (N−1)vi+β
N . Combine the condition si = αvi + β, we have α = N−1

N

and β = 0, and the bidding strategy s∗i =
N−1
N vi comprises a symmetric BNE. ■

4.4 Revenue Equivalence

Definition 4.9 (kth-order statistic)
The kth-order statistic, denoted X(k), is the kth-largest value among n draws of a random

variable X .

Lemma 4.4 (E[X(1)] for X ∼ U [0, 1])

E[X(1)] =

∫ 1

0
xfX(1)

(x)dx =
n

n+ 1

Proof
FX(1)

(x) = Pr
(
X(1) ≤ x

)
=

∏
n

U(x)

= xn.

■

Lemma 4.5 (E[X(2)] for X ∼ U [0, 1])

E[X(2)] =

∫ 1

0
xfX(2)

(x)dx =
n− 1

n+ 1

Proof
FX(2)

(x) = Pr
(
X(2) ≤ x

)
= xn + nxn−1(1− x)

■
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5 From Bayesian Game to Mechanism Design: The Revelation Principle

Theorem 4.1 (Revenue Equivalence)
If bidder’s values are uniform i.i.d., then the expected revenue of the first-price auction

is equal to that of the second-price auction, assuming bidders behave according to their

respective equilibrium strategies.

Proof The support of the uniform distribution does not matter; we choose [0, 1] for convenience.

Let R1 and R2 denote the expected revenue of the first- and second-price auctions, respectively.

R2 =
n− 1

n+ 1

R1 = E
[(

n− 1

n

)
vmax

]
=

(
n− 1

n

)
E [vmax] =

n− 1

n+ 1

■

4.5 Double Auction

Definition 4.10 (Double Auction)

Definition 4.11 (BNE for Double Auction)

Lemma 4.6 (Single Price BNE)

Lemma 4.7 (Linear BNE)

5 From Bayesian Game to Mechanism Design: The Revelation
Principle

Theorem 5.1 (The Revelation Principle)
Any Bayesian Nash equilibrium of any Bayesian game can be represented by an incentive-

compatible direct mechanism.
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